Influence of cyanobacteria, mixotrophic flagellates, and virioplankton size fraction on transcription of microcystin synthesis genes in the toxic cyanobacterium Microcystis aeruginosa

نویسندگان

  • Pia I Scherer
  • Carolin Absmeier
  • Maria Urban
  • Uta Raeder
  • Juergen Geist
  • Katrin Zwirglmaier
چکیده

Toxic cyanobacteria such as Microcystis aeruginosa are a worldwide concern in freshwater reservoirs. Problems associated with their mass occurrence are predicted to increase in the future due to global warming. The hepatotoxic secondary metabolite microcystin is of particular concern in this context. This study aimed to determine whether co-occurring microorganisms influence the expression of microcystin biosynthesis genes. To this end, we performed cocultivation experiments and measured mcyB and mcyD transcripts in M. aeruginosa using RT-qPCR. We utilized representatives from three different plankton groups: the picocyanobacterium Synechococcus elongatus, the unicellular flagellate grazer Ochromonas danica, and virioplankton from two different lakes. The presence of S. elongatus significantly increased mcyB and mcyD transcription in M. aeruginosa. Cocultivation with the mixotrophic chrysophyte O. danica did not increase the transcription of mcyB and mcyD; in fact, mcyD transcripts decreased significantly. The virioplankton size fraction of environmental water samples induced a significant increase in mcyB and mcyD transcription when obtained from lakes with cyanobacterial blooms. Our results show that co-occurring microorganisms influence the expression of microcystin biosynthesis genes in M. aeruginosa.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

γ-Lindane Increases Microcystin Synthesis in Microcystis aeruginosa PCC7806

HCH factories, and the waste dumpsites associated to its production, have become a global environmental concern, and their runoff could pollute ground and surface waters with high levels of the pollutant. In this study, the influence of lindane (γ-HCH) on microcystin production has been investigated in Microcystis aeruginosa PCC7806. This toxic cyanobacterium is highly tolerant to γ-lindane (20...

متن کامل

Global Transcriptional Responses of the Toxic Cyanobacterium, Microcystis aeruginosa, to Nitrogen Stress, Phosphorus Stress, and Growth on Organic Matter

Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the ...

متن کامل

The Effects of Hydrogen Peroxide on the Circadian Rhythms of Microcystis aeruginosa

BACKGROUND The cyanobacterium Microcystis aeruginosa is one of the principal bloom-forming cyanobacteria present in a wide range of freshwater ecosystems. M. aeruginosa produces cyanotoxins, which can harm human and animal health. Many metabolic pathways in M. aeruginosa, including photosynthesis and microcystin synthesis, are controlled by its circadian rhythms. However, whether xenobiotics af...

متن کامل

Complete Genomic Structure of the Bloom-forming Toxic Cyanobacterium Microcystis aeruginosa NIES-843

The nucleotide sequence of the complete genome of a cyanobacterium, Microcystis aeruginosa NIES-843, was determined. The genome of M. aeruginosa is a single, circular chromosome of 5,842,795 base pairs (bp) in length, with an average GC content of 42.3%. The chromosome comprises 6312 putative protein-encoding genes, two sets of rRNA genes, 42 tRNA genes representing 41 tRNA species, and genes f...

متن کامل

Functional analysis of PilT from the toxic cyanobacterium Microcystis aeruginosa PCC 7806.

The evolution of the microcystin toxin gene cluster in phylogenetically distant cyanobacteria has been attributed to recombination, inactivation, and deletion events, although gene transfer may also be involved. Since the microcystin-producing Microcystis aeruginosa PCC 7806 is naturally transformable, we have initiated the characterization of its type IV pilus system, involved in DNA uptake in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2018